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P L A N A R  D E F O R M A T I O N  IN G E O M E T R I C A L L Y  N O N L I N E A R  E L A S T I C I T Y  

V. D. Bondar '  UDC 539.3 

We will consider planar deformation within the framework of Novozhilov's variant of nonlinear elasticity. Equations 
in stresses and strains will be derived, and their elliptical type established. It will be shown that in this variant, as in linear 

elasticity, the characteristics of deformation are representable by two complex potentials, while the planar elasticity problem itself 
reduces to a boundary problem for the potentials. However, in contrast to linear theory the representations referred to and the 
boundary problem become nonlinear. The dynamic condition for which linear theory follows from nonlinear is stated. An 
analytical solution is presented for one of the problems, and a general method developed for solution of the nonlinear boundary 
problem. 

1. In the study of many practical mechanical problems linear elasticity theory does not provide the needed accuracy, 
so is replaced by nonlinear theory. Nonlinearity may be present in both the law describing mechanical behavior of the material 
(physical nonlinearity) and special features of the deformation (geometric nonlinearity). Among the latter cases is the nonlinear 
theory of elasticity developed by V. v.  Novozhilov [1]. In that theory it is assumed that rotations and extension-shear of material 
elements are small in comparison to unity and that the former may significantly exceed the latter. Such a situation is realized 
in a number of cases, in particular, deformation of flexible bodies: bars, plates, and shells. The assumptions made permit 
simplification of the general nonlinear representation of deformations in terms of extension-shears and rotations and use of a 
special nonlinear formulation. 

In Novozhilov's variant of elasticity the static problem is described by equilibrium equations, Hook's law, and a special 
nonlinear relationship between deformations and rotations and extension-shears, representations of the latter in terms of 
displacements, and boundary conditions specifying displacements on one portion g,  of the deformed body surface and stresses 
on another portion ~;p: 

div P + f = 0, 

P = XsIG + 2~ts, st = tr s, X = const, ~t = const, 

2e=2e+co-r  2 e = V u + ( V u )  ~ 2 t o = V u - ( V u ) * ;  

ulz" = h, P'nlz,  = o. 

(1.1) 

(1.2) 

Here X, # are elasticity coefficients, u, f, h, p, n are displacement, volume force density, boundary displacement, stress, and 
external normal vectors; G, P, e, e, r Vu, (Vu)* are the metric tensor and tensors describing stress, deformation, elongation- 
shear, rotation, the gradient, and transposed gradient of displacement. 

For planar deformation of a cylindrical body the planar fundamental problem is that in which Eq. (1.1) is satisfied in 
a planar region S, while Eq. (1.2) is satisfied on that region's boundary L. In Cartesian coordinates x, y for the deformed state 
Eqs. (1.1), (1.2) (for potential forces and energy V) have the form 

o (?~  - v) o?~y oP~y o (P~ - v) = O, 
o---7--,. + - b f  = 0 '  -~-x + oy 

P.~, = k (~, + e~:) + 2~ts;r P~ = k (s::~ + ev) + 2ps v, P~ = 2~te,.:, 

2s..,=2e~,-oJ~,, 2 s .  = 2 %  - o,~, s,,:, = % ,  

(1.3) 
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dux Ouy du r Oux duy Ou~ . 
e= = ~ x '  az = '~ -y '  2eo = ~ +-~-y, 2 r  ~ - - ~ - y ,  

~.1~.  = h~ (s) ,  . , 1~ .  = ' ,  ( s ) ,  

p~,~- P~,~ =p~(s), P ~ - P ~  =v~(s), 
L v L~ 

(1.4) 

where L u, I. v are portions of  the boundary L on which displacements and stresses, respectively, are specified; the Cartesian 

components of the vectors and tensors are denoted by the same symbols as the quantities themselves, but with literal subscripts; 

moreover, it is considered that the components of the normal are defined by the equation of  the contour Lx = x(s), y = y(s) 

(where s is an arc of L) by the expressions n x = dy/ds, ny = -dx /ds .  

Planar deformation can also be described in the complex coordinates z = x + iy, ~. = x - iy (considered as 

independent variables), in which system (1.3), (1.4) becomes more compact. To do this we transform to differentiation with 

respect to the complex variables using the expressions 

Ox o ~ + ~  ' ~ = i  - 

and make use, for example, of contravariant complex components of the vectors and tensors (denoted by the previous symbols, 

now with numerical superscripts), which are related to the Cartesian components of the corresponding quantifies by the usual 

expressions for component transformation, having the forms 

u~ = - ~  = u = u~ + iuy, 

hl = - h Z =  h = h~ + ihy, pl = - p T =  p = p~ + lpy, 

p ~  = ~ = P= - ? , ,  + 2i?~:,, ?~=?=+P., 
ett = ~ = ex~ -- ere + 2ieq, e t2 = t=  + ere, 

e it = ~ = e ~ . - - e r e + 2 i e ~ y ,  e t 2 = e ~ + e ~ ,  

oJ n = ~ =  0, to 2 x = ~ = 2 i o ~ . , y .  

In the final outcome Eqs. (1.3), (1.4) in complex coordinates appear as 

Op 11 
Oz 

+ 
o (pt2 _ 2v) p,t (1.5) o~ = 0, = T,~ = 2~te,1, pt2 = 2 (~. + ~t) e 12, 

eH = ~ = el,, r = el2 + �88 ( j l )~ ,  

Ou el 2 Ou d'ff oa2t = Ou O'~ 
en = e-m = 2 ~-z ' : ~-~z + ~z ' a--~ - ~z ; 

t2 dz p t l  a~ = 2 ip  (S).  
u lL  = h (s ) ,  1" ~ - ds L~, (1.6) 

2. Let certain displacements be specified on the boundary of the planar region (L u = L), so that it will be convenient 

to solve the planar problem in displacements. The problem in displacements in Cartesian coordinates follows from Eqs. (1.3), 

(1.4), after elimination of  the unknowns: 

d,,x o2ux ~ d,,y o% 1 - 2,, ov 
f f ' t = 2 ( l  - v )  0.-~-.2 + t o , y O - - ~ y + ( l  - 2 v )  v . , '  - o J .V- -+Ox  2 OxOy Ix Ox = O, 

02  = 2 (1 - v )  ~-o~,d" ~ + ( l  - ~ + o2,,,..+__o2,,~, t - 2,, ov = O; 
0>,2 "~ OxO.v 2v) ~ to~:, OY 2 OxOy ~ Oy 

u.lL = h~ (s), ,,yIL = h, (s). 

(2.1) 

(2.2) 
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Here O:xy is defined in terms of displacements by Eq. (1.3); v = M(2(X + g)) is the Poisson coefficient. Quasilinear system (2.1) 

is a generalization of  the Lam6 equations of linear elasticity. 

To study the type of Eq. (2.1), we take x I = x, x 2 = y, w I = u x, w 2 = uy, and, following [2], construct the 
characteristic determinant 

o.o o~,o? 

( a ,  ~ = 1, 2 ) .  

(2.3) 

According to Eqs. (2.1), (2.3) the elements of the determinant and its magnitude have the form 

All = 2 (1 - -  "v) o12 + o3~yalO2 + (1 - -  2v) 02 , At2 = --(a~,o~ + O102, 

A. = AHA22 - AI2A2I = 2 (1 -- v) (1 -- 2v) (o2 + 02) 2 . 

Since the Poisson coefficient varies within the interval 0 < v < 0.5, then A. > 0. Consequently, the characteristic equation 
A, = 0 has no real roots. Thus, quasilinear system (2.1), like the Lain6 linear elasticity system, is elliptical and boundary 
problem (2.1), (2.2) is correct. 

The problem in displacements in the complex variables can be obtained from Eqs. (1.5), (1.6) in an analogous manner 

and has the form 

02u OIOu a~ l(Ou 0~ 2 
2 0  - 2 ~ , ) ~  + ~ [o~ + ~ + ~  ~ - ~  ) 

l -2vV]lx - - 0 ;  
(2.4) 

ulL = h (s). (2.5) 

Equation (2.4) allows complete integration. In fact, after integration over $ it reduces to an expression containing the 
arbi/rary function ~o'(z): 

( 3 - 4 v ) ~ + ~ - ~ + ~  z -  , - " - ' 7 -  p. (z). 

Addition and subtraction of this expression to and from its complex conjugate yields the relationships 

it - -  - ~ = 2 (1 - v )  [~o' ( z )  - ~o' ( z ) 1 ,  

[Ou O'if] I - v  -- tp '  l - 2 v  
It ~-~z + 0~) = ( 1  - 2 v )  [T ' ( z )+ tp ' ( z ) ] - - -~  IT'(z) ~ ' ~ 1 2 + ~ V ,  

defining the derivative Ou/az in the form 

21t -~z tp' c = • ( z )  - ( z )  - a I v '  ( z )  - ~o' ( z )  ]'  + ~ v ,  

1 - v 1 - 2 v  
x = 3 - 4 v ,  c t = - - ~ ,  c =  l - v 

This equality can be represented as the inhomogeneous equation 

0 2 ~ u - •  [ff'2(~)-2~,(z),p'(z)+ ~ ' 2 ( z ) d z l  =TV, Oz 

(2.6) 
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the general solution of which will be [3] 

C 
2~tu = x~o (z) - ztf>' (z) - ~ (z) + ~ IV (z, z) - 

- c~ Iz'~ '2 (z) - 2 ~  (z) ~'  (z) + f ~,2 (z) d z ] ,  
(2.7) 

where tk(z) is an arbitrary function and the quantity W for a piecewise-smooth contour L and Helder function V is def'med by 

the expression [4] 

W ( z , z ) = - ;  _ , ~ = ~ + l n .  (2.8) 
S 

In the case of  an inf'mite region the potential energy in Eq. (2.8) must have the property 

v = o ( 1 / 1 ~ 1 1 §  13 > o ~ I~1  -" ~0. 

For arbitrary functions W there are valid expressions in which the integral is understood in the sense of  the Cauchy main value 

[4]: 

o w  o w  
o-T=v,  -~f~=--~ (~ _ ~)2 ( 2 . 9 )  

$ 

Equation (2.7) defines the displacement in terms of two analytical functions ~o(z) and ~b(z) - -  the complex potentials. 

Substitution of  Eq. (2.7) in Eq. (1.5) leads to representations of other characteristics of the stress-deformed state in terms of 

the potentials: 

# '  = i ;n  = - 2  [z~," (z) + , '  (z) ] + cW~ - 4c,,p" (z) [ z ~ - ( 5  - 't' (z) 1, 
p12 = 2 [~o' (z) + ~o' (z)] + kW, + 2ct [~o' (z) - ~o' (zj] ' ,  k = 1/(1 - v); (2.10) 

C 
~te H = r t ~  = -z~o" (z) - 1"  (z) + ~ w~ - 2ct~," (z) t z ~ - ~  - ,p (z)1,  

C 

tie .2 = (I - 2v) [~o' (z) + ~ '  (z)l + i W, - ct [~o' (z) - ~-r-~]2, (2.11) 

rtto al = 2 (1 - v) [~o' (z) - ~"r '~  ], 

while substitution in the condition on the contour, Eq. (2.5), yields a boundary problem for the potentials themselves: 

xso Cz) - z~,' (z) - ~ - a [ z F  2 (7) - 2 ~  (z) ~,' (z) + 

C 
+ f # 2  (z) az l lL = ho (s). ho (s) = 2)~h (s) - i W ( s ) .  

(2.12) 

Thus, in the Novozhilov variant of  nonlinear elasticity (as in linear theory) displacements, stresses, deformations, 

elongation-shears, and rotations can be represented in terms of  complex potentials defined by a boundary problem. Expressions 

(2.7)-(2.12) are nonlinear in the potentials. Their structure is such that together with the nonlinear terms they also contain linear 

terms coinciding with the corresponding expressions of Kolosov's linear elasticity [5]; thus, the expressions constructed here 

are a generalization of  Kolosov's equations. 
From the form of  boundary condition (2.12) we conclude that the terms generated by volume forces do not contain the 

potentials, so that the presence of  volume forces does not change the type of the boundary problem. 

3. We will assume that some stresses are specified on the entire boundary of the region (I1, = L), and consider the 

planar problem in stresses and rotations. 
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Equation (I .5) for the stress and rotation components permits expressing the displacement gradients as 

2 ~ t ~ =  -~ P + 1 - , 2~t~-~= 2 -  " (3.1) 

It can easily be seen that the consistency condition for this system yields an equation for consistency of stresses and rotations. 
The latter together with equilibrium equation (1.5) forms a closed quasilinear system of two first order complex equations for 
the complex and real stresses pH, p12, and the purely imaginary rotation w21; combination with the force boundary condition 

equations (1.6) then yields a boundary problem for the stresses and rotation 

0"--~- - 0-'~" (1 - 2v) pl2 + 2 ~ j 1  1 - 2 j x  = O, 
(3.2) 

OP H 0 (p12 - 2V) 
+ = O; 

Oz 07 

as - as L = 21p (s). 

System (3.2) is also fully integrable. In fact, elimination of the stress plX leads to the expression 

which after integration takes on the form 

)] ~zz p12 _ k V  + 2,~ -4 ~176 = O, 

(3.3) 

l 0,)2 ! ( I ) pl2 _ kV + ~ I - ~ to 2t = 4~o' (z), (3.4) 

where 9'(z), an arbitrary function, is the complex potential, and the parameters k and (x are deffmed by Eqs. (2.6) and (2.10). 

Separating the real and imaginary components in Eq. (3.4), we obtain 

l ((021) 2 ~Ot l 0,)21 ~0' p 1 2 _ / c v _ u  = 2 [ ~ o ' ( z ) +  (z)], U = 2 [ ~ o ' ( z ) -  (z)], 

which determine the real stress and the purely imaginary rotation as functions of the complex potential 

p~2 = 2 bp' (z) + qo' (z) ] + 2ct [~o' (z) - ~'  ('~ 12 + kV; (3.5) 

~tto 2~ = 2 (1 - v) [~o' (z) - ~o' (z)]. (3.6) 

With consideration of  Eqs. (2.9) and (3.5) equilibrium equation (3.2) becomes an equation for the complex stress pn:  

o {ptl + 2z~ ' ( '~  + 4aho" (z) [zqo' (z) - ~o (z) ] - cW;} = 0 07 

defining the latter after integration in the form 

pl~ = - 2  [z,p" (z) + * '  (z) ] - 4a,p" (z) [z,p' (z) - q~ (z) ] + cW;,  (3.7) 

where ~b'(z) is an arbitrary function; the parameter c and function W are defined by Eqs. (2.6) and (2.8). Equations (3.5)-(3.7) 
coincide with Eqs. (2.10) and (2.11) for stresses and rotation, obtained previously by another method. 
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With consideration of Eqs. (3.5) and (3.7) boundary condition (3.3) can be represented as 

d {  c 
aS. ~' (~) + ~o'  (~) + V (~) - 7 W (~, 7) + 

: } * + c~ [z~ '2 (7) - 2~, (~) ~ '  (~) + ~,,2 (~) a~ I = lp - v 7; 
L 

which after integration along the contour yields 

~, (z) + z~,' (z) + ,  (z) + a [z~ '2 C~) - 2~p (z) ~ '  (z) + f q,,2 (z) d z l l L  = g ( s ) ,  

g (s) = ip - ds) ds + 7 W (s) + coast. 
0 

(3.8) 

Thus, in solving the problem in stresses and rotations the planar elasticity problem also reduces to a nonlinear boundary 

problem for complex potentials. This problem is analogous to Eq. (2.12) with specification of boundary displacements, and its 
type is also independent of the presence of volume forces. The problem of Eq. (3.8) differs from the corresponding problem 
of linear elasticity [4] only in the nonlinear terms. 

Taking the stresses and rotation as defined by Eqs. (3.5)-(3.7) we may consider Eq. (3.1) as equations for displacements. 
The conditions for consistency of this system are satisfied by the first expression of Eq. (3.2), so that we can write the 
differential displacements in the form 

( ' ) )  : 2~tdu = p12 + ~tco21 1 - -~ co 21 dz + Plld~ = 

= d  {• (z) - ztp'(z) - W(z)  - a  [z~':(~) - 2 q ) ( z ) T - ' ~  + f  ,2(z)dz ] + 2 14"(z,-z) }.  

Hence, by integration we establish that the displacement itself is given in terms of the potentials by 

C 
2~tu = • (z) - ztp' (z) - ~p (z) + ~ W (z, ~) - 

- ~ [z~ '2 (z) - 2~ (z) ~' (z) + f ~': (z) az ] + coast ,  
(3.9) 

which differs from Eq. (2.7) only by an insignificant additive constant. Thus, if the potentials are defined by boundary stresses, 
the displacements are also defined by them to the accuracy of translations of the body as a rigid whole. 

One variant of the problem for rotation and stresses, Eqs. (3.2), (3.3), is the problem of rotation and stress functions. 
If we represent the stresses in terms of the real stress function U with the expressions 

4 ~u pn ~U /'"=~=- o7' =4~+2v, (3.10) 

then the equilibrium equation is satisfied identically, while the remaining expressions yield the following boundary problem for 

the stress functions and rotation: 

L I-�88 : (3.1 I) 
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= 2  ~ + i p -  a~)ds. 
L o o (3.12) 

Here (UT) 0 is the value of the derivative at s = 0, the parameters ot and c are defined by Eq. (2.6). 
The problem of Eqs. (3.11), (3.12) can also be reduced to a boundary problem for the complex potentials. In fact, 

integration of Eq. (3.11) leads to equality of the expressions in square brackets of the arbitrary function 4r  and after 

separation of real and imaginary components yields 

. .#, ,  
1 

4 ~ o -  + cV  - ( j l ) 2  q~, o~21 q~, (3.13) z z ~ = 2 [qo' (z) + (z) ], = 4ct [qo' (z) - (z) ]. 

The expression obtained for the rotation coincides with Eq. (2. I 1). With consideration of the expression for o~ 21, as well 
as the well known [4] representation of the potential energy in terms of complex and real functions, W, K 

2 eK j.f ow 
V =  o--~- = ~ '  K =  V(~, rl) l n l ; - z l d ~ d n  (3.14) 

S 

the first equation of (3.13) becomes an equation for the stress function 

0 , a  = ( z ) +  ( z ) - c o - T b T ~ + a i ~ , ' ( z ) -  (z)] 5 , 

defining the latter in terms of the potentials ~o(z) and ~b(z) in the form 

2 V  = z ~  (z) + z~  (z) + f ~,, (z) dz + f aV (z) dz  - c K  (z, "z) + 

+ a [z f ,p'2 (z) dz + z f .~,2 (z) d~ - 2~  (z) ,p (z) ]. 
(3.15) 

Thus, the stress function is defined in a nonlinear manner in terms of the complex potentials. Note that the portion of Eq. (3.15) 
linear in the potentials coincides with the stress function expression of linear elasticity [6]. It can easily be seen that the stresses 

of Eq. (3.10) detrmed by Eq. (3.15) coincide with the expressions of Eq. (2.10) for these quantities, while the boundary condition 

(3.12) coincides with condition (3.8). 
The generalized displacements, rotations, and elongation-shears of Eqs. (2.7), (2.11) U" = #u", t'l '~a = #w '~a, E ~'a = 

/ze "~, like the stresses of  Eq. (2.10), are defined by one and the same potentials, and are thus finite values. Let l o and Po be 
characteristic length and stress, while cr = Po/# is the characteristic dimensionless stress. We will compare these quantities to 

the corresponding dimensionless quantities, denoted by asterisks, using the expressions 

u~ = /oPo~ ,  w =/oPoW., 

p,,O = pop,~, p,, = Pop'S, v = PoV. ,  

v - ~o/'ou., K = g&K. ,  n"~ = Port: ~, 

~o' = / ' o ~ ' ,  ~ '  = P 0 ~ , ' ,  z = 10z , ,  s = los.. 

Then the relationships of  the problem for stress functions and rotation, Eqs. (3.10)-(3.12) and the representations of  the unknown 
quantifies in terms of the potentials of  Eqs. (3.13), (3.14) in dimensionless variables takes on the form 

pU = ~ .  = 4 o2v' pi.2 = 4 ~ - + 2 v . ,  

_ o f ~ . l  = O,  0i. 4 ~ + c V * + ' i " S - ~ - v  1 ~ (3.16) 
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s ,  

o~. ,. [ ~ " ) o  + ~p. - v .  ~ a.,.., n .  = 2 (~ - .,,1 (,,o: - ~ . ' ) ,  

"(.r )] U~ = Re ~ + ~ . d z ,  - -~ K ,  + ~ ~ -~, ~ ' 2 d z ~  - ~ , ' ~ .  . 

Assuming that the dimensionless functions are finite in modulus, while the parameter a is quite small in comparison to unity, 
in Eq. (3.1 6) we can neglect terms containing this factor as being small in modulus as compared to other terms. In the final 

outcome we obtain dimensionless expressions 

4 02U p,U 0~2 p11 = )5~7 = _ Oz n '  = 4  + 2 V ,  

~1 ~ = o ,  
$ 

2 ~ = 2  ~ + i p -  ds) ds ,  
L 0 

f2~1=2(1 - v ) ( T ' - ~ ' ) ,  U = R c  zqo+ ~ , , d z - - ~ K  , 

coinciding with the known expressions of linear elasticity [5, 6]. 

From Eqs. (2.7) and (2.11) we can also establish that in the expressions for the dimensionless quantities U.% E. "~, and 

fl~ for very small tr it is also possible to neglect nonlinear terms containing the factor a, after which they take on the same 

form as in linear elasticity. Thus, the results of linear theory follow from the results of the given nonlinear model for very small 

a, i.e., for characteristic stresses very small in comparison to the elastic constant of the material. 

We will assume that S is a singly connected finite (or infinite) region. We map it confonnally onto the interior D (or 

exterior D') of  a unit circle with circumference 3' using the functions 

z = w(~), w' (~,) # 0, ~ = rexp(i0)  ~ D. (3.17) 

Then the complex potentials take the form 

~, (z) = ~o (r,), r (~) = ~,,(~) = ~ ,  ( t , ) / , v ( r , )  = , ~  ( ; ) ,  r  = , r  = r  

, (z) = ,  (r.), q, (~) = , ,  (~) = v '  ( ~ ) / . , '  d;)  = u., (t;),  

while the displacements of  Eq. (2.7), stresses of  Eq. (2.10), rotations and elongation-shears of Eq. (2.11) (in the absence of 

volume forces) will be, respectively, 

2 ~ u  = • (~) - w (~)  r (~)  - ~ - ~ [~  (~) ~,~ (~) - 

- 2 ,  (~) r (~) + f �9 (~) •' (~) d~ l, 

p, ,  = r~2 = _ w (~) r  (~1 + ~ + 2 ~ r  (~1 [w (~) ,I, (~1 - ~o ( D  1}, 
(3.18) 

P =  = 2 [ ~  (t,) + ~, ( ; )  ] + 2 ~  [ r  (r,) - a, (r,) ]~, 

rto~ n = 2(1 - v) [~ (~) - ~ (~) ], 

2ge n = 2ge-'~ = pn,  2ge u = (1 - 2v) pl2 _ ~t (,.o2t)2/2. 

In view of Eq. (3.17) the polar coordinates r, 0 of the plane ~'are orthogonal to the curvilinear coordinates in the plane 

z. The physical components of the displacements and stresses in these coordinates are related to the complex potentials by the 

expressions [4] 

u, + luo = [~[ I~' (~)[ u, (3.19) 
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P,, - Poo + 2iP~o = 7_~ ~ pH P,, + Poo = p12 
~' (~) ' 

For the mapping of  Eq. (3.17) the boundary problems for the potentials for specification of  boundary displacements 

(2.12) or boundary stresses (3.8) take on the form of problems on the circumference of  a unit circle: 

• (-t) - w (-t) ~o' (-~)/w' ( q  - V ( 0  - c~N (~ (% ~o (0)  = ho (0 ;  

'9 (X) + w (~) t 9' (X)/w'  (x) + V (~) + otU (~ (x), ~ (~)) = go (x). 
(3.20) 

Here 

. . ~ /"  at 
N (~o (x), ho ('t)) = w (x) 7'2 if) 2~o (x) ~ + j ,9 ,2 (x) w' (x); ~,2-"'~ ' -  

"~ = exp (i0) E ~; 

(3.21) 

ho(r) and go(r) are functions known on % the constant appearing in the latter being arbitrarily fixed. 

4. We will consider the problem of volume extension of an elastic plane with an orifice which has the shape of an ellipse 

in the deformed state in the absence of stresses on the orifice contour, rotation at infinity, and volume forces. 

Let a and b (a > b) be the semiaxes of  the ellipse. We use a Cartesian coordinate system coinciding with those axes, 

directing the abscissa along the major axis. Then the equations of the ellipse (contour L) and the parameters n, m, characterizing 

its dimensions and form, have the appearance 

x2/a  2 + y2/b2 = 1, O< n = (a + b ) / 2  < ~ ,  

O < m = ( a -  b ) / (a  + b) < I. 
(4.1) 

In the limiting cases, at m = 0 the ellipse degenerates into a circle, and at m = 1, into a rectilinear slot. 

We denote by Po > 0 the tensile stresses and consider that in accordance with the initial data V = 0, W = 0, Px = 

py = 0. Then the conditionS on the periphery of the orifice (3.8) (for zero constant) and at infinity take on the form 

g~ = 0, g ~  (4.2) 

P~=Pr~=Po, P,~=0, ~,~=0. (4.3) 

The exterior of the ellipse is reflected conformally onto the exterior of a unit circle by means of  the function 

z =  w(~)  = n ( ~ +  m / ~ ) ,  w'(~) ~:0,  ~ = r e x p ( i 0 )  E D '  

whence follow the expressions 

x = n (r + m / r )  cos O, y = n (r - m / r )  sin O; 

. d l (n  (r + ml r ) )  2 + y21(n (r - m / r ) )  2 = 1, 

x21(2n V"rff cos 0) 2 - y21(2n v'Th" sin 0) 2 = 1, 

(4.4) 

(4.5) 

(4.6) 

indicating that r, 0 are elliptical coordinates in the plane of  deformation and that the boundary ellipse of  Eq. (4.1) corresponds 

to the ellipse r = 1. 

With consideration of  conditions (4.2), which in complex form appear as go = 0, the second boundary condition for 

the potentials of  Eq. (3.20) becomes homogeneous: 

(~) + ~ (~) ,i, (~) + ~ + ~ tw (~) ~ (~) - 2~ (~) �9 (~)' + 

+ f �9 (~) ~o' (~) d~ 1 ,=, = 0. (4.7) 
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We take the potential so(~) in a form which generalizes its expression in the linear solution of this problem [4] and 

contains two free real parameters A and B, so that Eq. (4.7) defines the other potential ~b(g'), and finally 

mB~ [ 1 +  etA 
~ o ( ; ) = , ~  A ; +  ; ) ,  ~ , ( ; ) = - n  A - - V - - +  

+ mB (I + aB) ~ + ( l ~ A  + m (l - 2c~B) ~) A~2- mB - -  + 

~2 #~l 

, - 

+ <:< '  ( ' r  (A - I , , +  + 

(4.8) 

In the absence of volume forces the potentials of Eq. (4.8) and the mapping function (4.4) correspond to the following 

stress expressions of  Eq. (3.18): 

(A~2 - '"13 A~2 - "~.IB I (a~2 - mH Z~2 - o.._B/2 

pa~= ~i-;"[2~ J2,,'(a- B)('K- ~) [ L _ ~ ( ~ _ , , ~  + 2a ,,,(A - B)(,- ~ ) ] ~  (~ _ ",) . + 

+ m (A + n) (~4 + I) - 2 (A + maB) ~2 [(,a - ma~) 2 (4.9) 

t. 
+ 2A-~'2IB~ A~22-mB m'2- I [A~'2-mBI2]} + - - - q r -  . 

We arrange the arbitrariness of the parameters A and B to satisfy the conditions at infinity for the stresses of Eq. (4.3), 

which in complex form appear as pc.H = 0, Po, 12 = 2P o. As a result we obtain the equations 

a ( A - B )  2 + A  + B = 0 ,  2A =P0,  

defining these parameters: 

A = T '  = Po + ~(i --~,~ , o = -~- (4.10) 

Equations (4.9), (4.10) yield two solutions for the problem. The solutions found remain in force for limited extensions, 
for which a < 1/(2(1 - v)) (at (r = 1/(2(1 - v)) they coincide with each other), and lose meaning at intense extensions for 

which a > 1/(2(1 - v)) and the parameters of Eq. (4.10) become complex. It will be shown below that the second solution does 

not correspond to the original assumptions of the model considered and should be rejected. 
The potentials of  Eq. (4.8) in the absence of forces correspond to the following rotations and elongation-shears of Eq. 

(3.18): 

to ~l = 2 1 - ~ ,,1 ( a  - n )  (~2 _ ~ )  , 

I~ O; 2 -m)  C ~ - m )  

(;2 _ .0 (~2 _ m) z/ (;2 _ .02 (~ _ .02 ' 

- ,,, . (C - ,,,)~ " ~ f;  - ,,,) J 

+ ,,, (a + a) (~' + I) - 2 (A + ,,?a) ~2 I -. [(~ - ,,ta~) ~ 

(4.11) 
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+ 2 - -  
A - mB'~ 2 A'~ - mB 

~2 ~2 -- m 
- -  +--F- )/J 

Here the parameters A and B are defined by Eq. (4.10). F rom this it is evident that co~, 21 = 0, i .e. ,  the condit ion for rotation 

at infinity, Eq. (4.3), is not satisfied. 

It is also evident f rom Eq. (4.11) that to realize the fas t  initial assumption of  the model  lena I < 1, Ionia[ < 1, we 

must  take 

I A l 4 t  ~ 1, In14~-'~ i .  (4.12) 

It follows f rom the flu'st condit ion of  Eq. (4.12) with consideration of  Eq. (4.10) that the characteristic dimensionless stress must 

be small in comparison to the unit quantity 

[Al /~ t  = 0 / 2  < 1, o = Po/it -'~ I. (4.13) 

Note that the Poisson coefficient v and the quantity 1/(2(1 - ;,)) for elastic materials vary over  the ranges 

0 < v <  0,5, 0 , 5 <  t / ( 2 ( 1  - v ) )  < 1, 

so that the case of  coinciding solutions in which a = 1/(2(1 - p)) does not agree with Eq. (4.13) and must  be rejected. In the 

future we will  consider  only weak extension where according to Eq. (4.13), o ,~ 1. In this case the expression B•  can be 

linearized with respect to ~r and written in the form 

B + _ _  o 1 1 
~, = 5 + ~ ( - 1  + ~/1 - 20 (1 - v ~ )  = - 5 a ,  (4.14) 

B-  o 1 2 3 
" ~ " = 2  l - v  (1 + r 1 7 6  l - v + 2  ~ 

It can easily be seen f rom Eqs. (4.14), (4.13) that the second condition of  Eq. (4.12) is satisfied in the first solution 

but not in the second. Thus, both requirements of  Eq. (4.12) for slight extension correspond only to the first solution, in which 

we must take 

o ~  1, A = P 0 / 2 ,  B = - P o / 2 .  (4.15) 

For  the parameter  values of  Eq. (4.15) for the rotation and elongation-shears of  Eq. (4.11) in the elliptical coordinates 

of  Eqs. (4.5), (4.6) we obtain the expressions 

4m( l  - v )  r 2sin20 

r 4 - 2.~ cos 20 + m 2 ' 

e t2 = 20 (1 - 2~) (4 _ ,n~) + o (1 - v) m2r 4 sin 2 20 
r 4 - 2mr 2 cos 20 + m 2 

el t or2e-2~" I 2m (r2 - 1) [ m ( ,  - v) ( I  f e -2 /~  l -  - m2 (4.16) 
= rZe -~~ m [(r2e - - -~ ' 'F-  mq 2 1 - me -~~ + o rZe-'~ 1,, j r2e -2i~ m + 

1 - v  r . . . . . .  (1 +mr2e-2/~ 2 r2e-2i~ 3,,l(r4e-'i~ l )+( l_m)r2e -2 i~  
+ 0 " 7 -  Lr2e_2iO (mr2e_2iO_ 1) + r2"e-2~ (r2e-2/O-- --" . . . . .  _ m)2 " 

F rom Eq. (4.16) with considerat ion of  the relationship 

r 4 - m  2 = ( r  2 + m )  [ ( r +  1 ) ( r -  1 ) + ( I - m ) ]  

we can conclude that under  the conditions 
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r - 1 - -  o, 1 -- m -- o, 20 ;~ O; ~:; 2~; 3~ 

we h a v e  l ee ' 31  - -  I o .  r  i.e., the other original assumption of the model will be satisfied. Thus, for slight extension of a plane 

with prolate elliptical orifice there exists a region in the form of a band enclosing the ellipse periphery except for the endpoints 

of the axes of symmetry, within which small rotations significantly exceed small elongation-shears. Thus, solution of the problem 

within the framework of  the nonlinear model considered is justified. 

The physical components of the stresses in the elliptical coordinates Prr, Pro, P00 are related to the complex components 

by Eqs. (3.19). If we substitute in them the reflection of Eq. (4.4), the complex stresses of  Eq. (4.9), and parameters of Eq. 

(4.15), then the solution of  the problem corresponding to the original assumptions of  the nonlinear model will be defined by the 

expressions 

2Po ( r4 - "12) PO (1 - ",,) ,n2r 4 ( e  ?'/~ - e -2 /e )  2 
- -  + 0 '  

P , ,  + Poo (r2e ~~ - m )  (r2e - ~ e  - m )  (r2e ~~ - , 0  2 ( r2e  -2/~ - m )  2 ' 

{ I 2P~ "2 .2m (r 2 - l) 1 - me -~~ + cm (1 - v) r 2 e _ 2 i  o - mJ Prr - -  Poo + 2 i P t o  = r2e2io _ m (r2e - ~ ~  - m )  2 

I - ,,2 L F(II ' 2 -,+ r e 1'1 o.e2JO 1 -- +...._...~' + mr2e-21~ 2 + 
2 -210 -- mr2d_2iO - -  2 (1 + mr2e -~~ i -~o + 

r r -- m 8 r  2 r e -- m 

+ (1 - mr2e -~~ ~ '"] 

(4.17) 

For the stresses Prr 1, pro1, peel on the boundary ellipse r = 1 Eq. (4.17) yields the expressions 

p i t  = p ~ l  = O,  pl0o = 2 P  0 ( l  - ,n 2) 4Po ,n  (1 - v )  sin 2 20  
- o . (4.18) 

1 - 2 m  cos 20  + ,,i 2 (1 - 2 m  cos  20  + m2)  2 

We will study the behavior of the stress Pc01 on the boundary of the orifice. The extremal points are defined by the equation 

dPeol/d20 = O, which is satisfied for one of the two conditions 

sin 20 = O, cos 20 = vx/v2, 

where 

v l =  1 - m  + - 4 m 2 o ( 1 - v ) ;  v 2 = 2 m  [ 1 - m  2 - o ( 1 - v ) ( 1  + m  2)]. 

In the interval 0 < 20 < 4~r these equations have the roots 

20 = O; ~:; 2~; 3~, 

20 = +-arc cos u,/v2; 2~ - arc cos ux/u2, 

of which the following are realized for Iv21 > Ivll ,  i.e., for 

V2 > O,  --V2 < Ol < 1;2 

or for 

v 2 <  O,  v 2 <  v l <  - - v 2 .  

These systems of  inequalities, having been written with consideration of the expressions for v 1, v 2, when solved for the 

quantity o(1 - J,), agree with each other for 

I -- m 2 l -- m 2 

o ( 1 - v ) < -  2,,---7-' o ( l ~ v ) >  2,,, (4.19) 
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respectively. Since a(1 - v) > 0, only the second of these is meaningful. Solving the latter for m with consideration of the 

conditions m > 0 and cr ,~ 1, in the approximation linear in a we obtain m > 1 - a(l - v). Standard analysis reveals that 
the nonzero stress of  Eq. (4.18) for one form of orifice 

0 < m ~  1 - o ( 1 - v )  

has extrema 

a t .  2 0  --- O; 2 ~  P ~  = ( P ~ ) m . ,  = 2 P o  1 + t,____~t > 0 ,  
1 - -  t t t  

1 - -  m 
at: 213 = =; 3st P~o = (P~o),.~. = 2Po ~ > O, 

(4.20) 

i.e., prolate elliptical orifices extend weakly and moderately. As in the linear solution of [4] the extensions are extremal at the 

points of  the ellipse lying on its axes of  symmetry, with the maximum on the major semiaxis and the minimum on the minor. 

In particular, it follows from Eq. (4.20) that upon degeneration of the ellipse into a circle (m = 0) the extrema coincide in 

magnitude and are equal to double the stress at infinity. 

For another orifice form 

1 - o ( l - v ) < m <  1 

we obtain 

I -I- nl 
at. 20 = O; 2~t P~ = (P~).** = 2Po ~ > O, 

at: 20 = ~t; 3 ~  P ~  = (P~),,,.,, = 2Po ~ > 0 , I  - ,,, 
1 + m 

Vl v I at  213 = __ ,arc cos --; 27t • arc cos --  
v2 v 2 

p ~  = ( p ~ ) = .  = e0 
o ( t  - ~) ( x  - 1/m) (~ - m), 

(4.21) 

where in view of  the second inequality of Eq. (4.19) 

x = 2 m o ( l  - v ) / ( 1 - m  2) > 1, x - m  > 0 .  

Hence, it is clear that 

a t :  

at. x <  1 / m  (P~)mi,>0, 

at: "c > l / m  (P~)mi, < 0, 

x =  1 / m ,  x = m (P~0mi,=0. 

Thus, on the contours of  highly prolate elliptical orifices the properties of  the limiting stress are more diverse. In this 

case stress maxima occur at the ends of  the axes of  symmetry, with absolute maxima occurring on the major axis. In the vicinity 
of these points the contour is in tension. 

Stress minima identical in magnitude are reached at points occupying intermediate positions between the maximum 

points. In the vicinities of  these points, depending on the parameter values, the contour may be either in tension, a neutral state, 

or compression. In particular, it is evident from Eq. (4.21) that upon degeneration of  the ellipse into a rectilinear slot (m = 1) 

the absolute stress maximum increases without limit, while the minimum decreases without limit, these extrema being realized 

at one and the same points, the ends of  the slot. Thus, the stress becomes undefined a t  the slot ends. The stress in the middle 
of the slot will equal zero. 

5. We will assume that volume forces are absent, that an elastic plane has an orifice of  arbitrary form, and consider 

the boundary problem for the potentials of Eq. (3.8) for stresses finite at infinity and having values of the general form at the 
orifice boundary. 
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Generally speaking, in a singly-connected f'mite region (not containing the origin of the reference system) the complex 
potentials are not unique. However, the requirements of unambiguous stress and rotation values impose certain limitations on 

them. 

We denote by [X]t the increment in the smooth function X(z, ~) upon positive traversal of the contour l containing the 
orifice. It is known [6] that for a smooth function the relative order of the operation of calculating the increment along a closed 
contour can be transposed with that of differentiation: 

oS [~ l ,  = $ [~tl, = . (5 .1 )  
17 ! 

When volume forces are absent (V = 0) the conditions for nonambiguity of  the stresses and rotation of Eqs. (3.4) and 
(3.7) have the form 

0 = [eUl ,  = - 2  [zso" (z) + ~'  (z) + 2c, so" (z) (zso' (z) - so (z))] , .  

(5.2) 

From Eqs. (5.2) and (5.1) it follows that 

[so' (z )  ], = 0 ,  [so" (z)  1, = 0.  

Then a consequence of  Eqs. (5.3), (5.4) will be the relationship 

[~ '  (z)  1, - 2a~o" (z)  [so (z)  1, = 0,  

which defines the function increments in the form 

[so (z)], = 0, [~ '  (z)1, = 0. 

(5.3) 

(5 .4 )  

(5 .5 )  

With consideration of Eqs. (5.4), (5.5) the complex potentials can be represented in terms of functions well-defined in an infinite 
region ~* and ~b*: 

SO (z) = SO* (z), x p ( z ) = B l n z + v  ~ B = c o n s t .  (5.6) 

Expanding these functions in Loran series, we find that finiteness of the stresses and rotation of  Eqs. (3.4), (3.7) in the 
infinite region requires that the potentials of Eq. (5.6) have the form 

so (z) = aiz + so. (z), ~ (z) = B In z + b~z + ~ .  (z), 

s o . ( z ) = ~ a _ . z ,  , . ( z ) = ~  -" --n b - n  Z 1 

0 0 

where the coefficients a I and b] are defined by the conditions at infinity as follows: 

(5.7) 

al  = �88 l~ + ~ o ~  1 - ~ o ~  , b~ = - i e2d'" (5 .8)  

The coefficient B can also be expressed in terms of a mechanical quantity. For this purpose we will consider the arc A'ff'A located 

in the region S and assume that at each point thereon the stress vector is defined. Then in accord with Eq. (3.3) the components 
of the main vector and main moment of the forces distributed along the arc are defined by the expressions 
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F = Fx + iFy = (px + ipy) d s  = p d s =  ~ii p12 "~s ~ ds ,  

o o 0 

I< {s M = Mz = xpy - yp= ds  = R e  - i  z p d s  = 

o 0 

= R e  - ~ d s  - -  p U  . 

Using the stress expressions of  Eqs. (3.5) and (3.7) in the absence of volume forces we find the integrands 

' (  " E) 2 1 ' ' 2 - -  p "  = { ~ ( z ) + z ~ ' ( z ) + ~ ( z ) +  

+ ,~ [ ,~ "  6) - 2~o (,) r  + J ~o" (,) a, ]}, 

:_: ,,)} Re ptZ _ p u ~  - - R e ~  

- J" v (~) a~ + ~ ( ~  ~'~ (~) - 2 ~  (~) ~,' (~) + ~, (=) ~, (~))}, 

and consequently, the components of  the main vector and main moment of contour forces are deemed by the potentials with the 

expressions 

IF = tp (z) + z~?' (z) + ~ (z) + ~ [z'~ '2 (z) - 2~p (z) tp' (z) + 

+ f~,,2 (z) azl I~,~ + c o a s t ,  

M = - R e  {zzho' (z) + z V  (z) - f q) (z) dz  + 

+ ct (z~o'2 (z) - 2z~o (z) ~o' (z) + ~o (z)~o (-~)} I,c,> + const. 

(5.9) 

Applying the first expression of Eq. (5.9) to the closed contour L, traversed in the positive direction (i.e., clockwise), 

and using the expressions which follow from Eq. (5.7) 

we fred that the constant B can be expressed as 

/3 = 7 / 2 ~ .  ( 5 . 1 0 )  

The potentials of  Eq. (5.7) correspond to the following displacements of  Eq. (3.9): 

21xu = R ((xal - al) e i` - ble -i*) - BInR + • + iBcr + O ( I / R ) ,  z = Re/~ 

Here by O(1/R) we denote terms which are of  order 1/R outside L. Hence it is evident that, generally speaking, for finite 

stresses and rotations the displacements increase without limit at infinity. In order that they remain finite, the conditions 

a l = 0 ,  b l = 0 ,  B = 0 .  (5.11) 

must be observed. In light of  Eq. (5.8) the first two of these require that stresses and rotation disappear at inf'mity, while in view 

of Eq. (5.10) the last expression requires that the main vector of  the contour forces vanish. In the case of  Eq. (5.11) the 
potentials of Eq. (5.7) are holomorphic in the infinite region of the functions, and at infinity the displacement takes on a value 

deemed by the coefficient %: 
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-" ~ b  -" ~ p ( z ) = ~ . ( z ) =  a_.z . , ( z ) = ~ . , . ( z ) =  _.z , 2p.u, ,=• 
o o (5.12) 

Thus, for stresses, rotations, and displacements Finite within an infinite region the potentials are well-defined, have the 

form of Eq. (5.12), and are def'med in terms of boundary condition (3.8), where we must take V = 0, W = 0, const = 0. 

If for finite stresses and rotations infinite displacements at infinity are admissible, then the potentials are unambiguous 

and defined by Eq. (5.7). In this case we can consider the boundary problem for the unique potentials ~o, and ~b,, which follows 

from the problem of Eq. (3.8) and is of the same type: 

A . T .  (z) + A .z  v '  (z) + V* (z) + a N  (tp., "~.) It. = g" (s). 

Here 

A. = 1 + 2a (a~ - a~); N (~. ,  "~.) = z'~2(% - 2q~. (z) ~" (z) + f q/2(z) dz; 

g .  (s) = g (s) - [at + a l  + ct (ai - ai)  21 z (s) - B In z (s) - b tz  (s); 

g, is a known function well-defined on L; therefore in the future we will limit our examination to the problem of Eq. (3.8). 

The infinite singly-connected region can be conformally mapped onto a unit circle D (with circumference ~) by the 

function [41 

r 

z = w(~) =~-+ w o(~), t: e D, 

where c is a constant and w 0 is a function holomorphic on the circle. Then the potentials of  Eq. (5.7) are defined by the 

equalities 

ttlC ~ _  
( t , )  = T + ~oo (~), , (~) = - B  tn t, + + , o ( t , )  

[9o(~), ~bo(D are functions holomorphic within the circle], the stresses and rotation are defined by Eq. (3.18), and given Eq. 

(5.11), the boundary condition for the potentials is def'med by the second expression of  Eq. (3.20). 

We will use condition (3.20) to seek the potentials so(~') and ~b(~), which together with their derivatives are continuous 

in the closed region and satisfy the condition ~b(0) = 0 (without affecting the form of the stresses and rotations). We multiply 

condition (3.20) itself and the equation complex conjugate thereto by 1/(2~ri(r - ~)) and integrating each along the contour -g 

by using the properties of  a holomorphic function 

I f v(x) dx 1 f~d't 
z=~ V:~ =v(rj ,  TZ~,j q=~- =VDS, 

"t u 

we obtain expressions for the potentials in terms of the boundary values of one of them and its derivative: 

,/ .r ? 

"1 u y 

(5.13) 

[N(r) is defined by Eq. (3.21)]. The Fast relationship of Eq. (5.13), written in the form 

? (%o (~;), c,) = r i  (~ (t,)) + c~R (~ (t,)) = o ,  

where 
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! K n (~, (~;)) = T (;)  + ~ f. (t;, r ~ dz - A (r~), 
u 

] f g (~) dx J ~ o ( ~ ) - - ' o ( ~ )  A ( ~ ) = ~  - -  , K ( ; ,  ,r) -- - ~  ~ _ ;  ~ _ ;  

after direction of ~" to a point a on the boundary circle, leads to a nonlinear functional equation for the unknown fimction ~(cr) 
which contains the parameter ot as a factor before the nonlinear terms: 

1 ' ( ~  (,~), a)  = 1-I (~p (o)) + a R  (~o (o)) = 0 (5.14) 

[II(so) is the linear elasticity operator]. 
We will apply the modified Newton's method of [7] to Eq. (5.14), seeking the solution in the form of a series 

~p, ,~,=~p, , -  [n ' (~o0)l- l (e(~o, , ))  (n = 0, l . . . .  ), (5.15) 

in which for the zeroeth approximation we take the solution ~o of the linear problem II(s%) = 0. The process of Eq. (5.t5) has 
the advantage that it makes use of an inverse operator corresponding to the zeroeth approximation. For convergence of the 
sequence of Eq. (5.15) it is required that the parameter not exceed some number defined by the form of the operators contained 

in the equations. 
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